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ABSTRACT

Fractional factorial designs have been used successfully in industry and

elsewhere to detect and estimate sparse factor effects. The effects usually

envisioned measure changes in location associated with the experimental

factors. In this paper we consider the possibility of detecting and estimating

sparse dispersion effects measuring changes in variance associated with the

factors.
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SIGNIFICANCE AND EXPLANATION f‘

Unreplicated fractional factorial designs are frequently employed as :%f

screening designs in industrial experimentation. Current methods of analysis ﬁ!

are primarily concerned with determining the effect of experimental variables )
on the mean value or location of the response y in terms of the usual main _

effects and interactions which we will here call location effects. We 51

consider in this paper the possibility that the variables may also affect the :i

v

N

variance of y analogously through dispersion effects. The nature of the

alias relationships between location and dispersion effects is discussed and a

method developed for identification of dispersion effects when location

effects are also present.
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STUDIES IN QUALITY IMPROVEMENT I:
ISPERSION EFFECTS FROM FRACTIONAL DESIGNS

George E.P. Box and R. Daniel Meyer®*

1. INTRODUCTION
Table 1 shows in summary a highly fractionated two-level factorial design employed as
a screening design in an off-line welding experiment performed by the National Railway
Corporation of Japan (Taguchi and Wu, 1980). To the right of the table is shown the

observed tensile strength of the weld, one of several quality characteristics measured.

The authors assumed that, in addition to main effects only the interactions AC, AG,
AH, and GH might be present. On that supposition, all nine main effects and the four
selected two-factor interactions can be separately estimated by appropriate ;rthogonal
contrasts and the two remaining contrasts corresponding to the columns labelled ey and
e, measure only experimental error. In the last row of the table are shown the grand
average and the fifteen effect contrasts calculated in the usual manner. In this paper
these will be referred to as "location" effects. They are plotted in a dot diagram below
the table. A normal probability plot (Daniel 1959, 1976) shows thirteen effects roughly
following a straight line with main effects B and C, falling markedly off the line.
This suggests that, over the ranges studied, only factors B and C affect tensile
location by amounts not readily attributed to noise.

On the assumption, then, that B and C are the only important location effects, the
sixteen runs could be regarded as four replications of a 22 factorial design in factors
B and C only. However when the results are plotted in Figure 1 so as to reflect this,

inspection suggests the existence of a dramatic effect of a different kind apparently not

*This is a revised version of TSR #2746

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041,
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previously noticed. Wher factor C 1is at its minus level, corresponding to the use of an

-y

alternative material, the spread of the data appears much larger than when C 1is at its o
plus level., Thus in addition to detecting shifts in location due to B and C, the

experiment may also have detected what we will call a dispersion effect due to C. .

This, of course, is not the only possible explanation of the data. If, instead of :;“i

adopting the assumptions of the authors, it has been supposed, for example, that all two- e

factor interactions might be appreciable, then, because of the identity =-BCD =

1 x 14 x 15 = I in the defining relation of the design, the large contrasts associated
S with columns 14 and 15 could have been due to B and C as postulated or
alternatively to B and BD or to C and CD. The data might also be accounted for by
supposing that certain of the tested factors other than B and C affected C only at
D its minus level. Analysis of the eight runs made at the minus level of C do not support
any simple explanation of this kind. However screening designs should normally be

employed in a sequential process of investigation where the alternative possibilities

which they offer may be resolved in subsequent experimentation. (See, for example, the
discussion of Tippett’s cotton experiment on pages 88-90 of Fisher (1966) also Box, Hunter
and Hunter 1978.) In an ongoing investigation therefore such possibilities ought to be
considered for further study. We shall pursue the implications of the simplest

explanation here while inviting the reader to bear all the above provisos in mind.

i B P
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Figure 1. Welding experiment data presented as four replicates

2 . . .
of a 2 factorial desiyn in factors B and C only.
Arrows indicate sample averages.
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2. DISPERSION EFFECTS
Fractional arrangement and other orthogonal arrays introduced by Finney (1975),
Plackett and Burman {(1946) and Rao (1947) have frequently been used in industry: see for
example Davies (1954), Daniel (1976), Box, Hunter & Hunter (1978). 1In particular they are
employed as screening designs when it is believed that the large effects it is desired to
detect come from only a small number of the tested factors. This may be called the

hypothesis of effect sparsity. The tensile data suggests the general possibility that the

use of unreplicated fractional designs might provide an economical way of detecting sparse
dispersion effects as well as sparse location effects. This idea is pursued in the
remainder of this paper. The procedures we discuss are for the identification stage of
the problem-solving iteration (3ee for example Box & Jenkins, 1976) suggesting tentatively
which factors might have location and which dispersion effects . Efficient maximum
likelihood estimation for fitting an identified model is briefly discussed at the end of
the paper.

Consider again the design of Table 1. There are 16 runs from which 16 quantities-~-
the average and 15 effect contrasts--have been calculated. Now if we were interested in
possible dispersion effects we could also calculate 15 variance ratios. For example, for
the i'th column we could compute the sample variance 52(1-) from the eight observations
associated with a minus sign and compare it with the sample variance 52(i+) from the
eight observations associated with a plus sign, to provide the ratio F; = 52(i+)/

32(1-). If this is done for the fifteen contrast columns of welding data the values for
InF; given in Figure 2(a) are obtained.

It will be recalled that in the earlier analysis a large dispersion effect was
asgociated with factor C (column 15). However in Figure 2(a) the dispersion effect for
this factor is not especially extreme, instead the effect for factor D (column 1) stands
out from all the rest. We will see how this may be accounted for by the aliasing of

location and dispersion effects which we now consider in a preliminary way.

-5
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Since the sixteen location effects are obtained by non-singular linear transformation
of the original sixteen data values, calculated dispersion effects must be functions of
the location effects. The general nature of the location-dispersion aliasing is explained
in the section 3 which follows. It is shown that each dispersion effect is a ratio of ﬂlLL,ﬂAijy
' w €L sums and differences of the location effects. For immediate i!lustration equation (1)
7t
shows the identity that exists for the F ratio associated with factor D, and hence for

column 1, of the design. In this expression 1 is used to indicate the location contrast

associated with the ith column.

A a2 ~ a2 A a2 a a2 ] A A 2 a A 2
F =F (2+43) + (4+45) + (6+7) + (849) + (10+11) + (12+13) + (14+15) (0
D 1 A oa2 a a2 A a2 a a2 A A 2 2 2

(2-3) + (4-5) + (6=7) + (8-9) + (10-11) + (12-13) + (14-15)

This equation shows in particular how the extreme value for Fp, can be accounted by

N a

the location effects B = ;4 = 2.15 and -é = 15 = .,10 whose squared sum and squared
difference appear respectively in its numerator and denominator.

A natural way to try to eliminate such aliasing is to compute variances from the
residuals obtained after least squares modelling of large location effects. We show in
Section 3 that after such elimination alias relations such as equation 1 remain of the
same form but with location effects from eliminated variables removed. Dispersion effects

%i calculated from residuals after eliminating the location effects of B and C are
shown in Figure 2(b). It is seen that an extreme dispersion effect is now associated

with C agreeing with our earlier analysis.
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3. DISPERSION AND LOCATION ALIASING

3.1. Identities Existing Between Dispersion and Location Effects J

In order to study the identity relations existing between location and dispersion C.
effects consider an n X n orthogonal array with n = 29 columns of -1's and +1's

labelled Let =1 be a column of +1's and the remaining columns
Xg g

OIS RSP
delineate the usual contrasts for the main effects and interactions of a 239 factorial
design. In general we suppose that the array is to be used either as a 2k-p fractional
or as a full factorial to test k factors, so that g = k - p with p 2 0. -
—
To generate the columns of a 29 orthogonal array it is convenient to begin by ,!!
writing a full factorial for q letters employing Yates' standard order columnwise. We
then label columns from zero to n-1 (as illustrated below and in Table 1 for q = 3 and

q = 4 respectively). In practice a design with n = 8 would usually be too small to

allow variance effects to be usefully studied. We employ it here only to illustrate the

argument.

tUN
0 1 2 3 4 5 6 7 -
1 A B AB c AC BC ABC !!
+1 -1 -1 +1 -1 +1 +1 -1 -
+1 +1 -1 -1 -1 -1 +1 +1 -
+1 -1 +1 -1 -1 +1 -1 +1 ¥
+1 +1 +1 +1 -1 -1 -1 -1
+1 -1 -1 +1 +1 -1 -1 +1
+1 +1 -1 -1 +1 +1 -1 -1
+1 -1 +1 -1 +1 -1 +1 -1
+1 +1 +1 +1 +1 +1 +1 +1

As is well known an array generated in this way may be used as a full factorial or as a S

fractional design. For example, associating three factors with columns 1, 2, 4 above j
reproduces the 23 factorial, four factors associated with columns 1, 2, 4, 7 produces a T!!

4-1 . . . 7-4 4
sz fractional, seven factors associated with columns 1 through 7 produces a ZIII

fractional. The roman subscript is used to denote the design resolution: that is the L

length of the shortest word in the defining notation (see, for example Box & Hunter

(1961'),
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Now because the columns ;50,)51,...,5)1_1 form a group closed under multiplication .
"
defined such that the product column x.. has for its uth lement x; = XX, o
=ij iju 1u*®ju
any such product column must be a column of the original array. .
Consider now the elements of a column /2 (%5 £ ;)01 #0); these are -
+1Af x, o= -1 - |
V. .
2 (x -x, ) = }
Ou  “lu 0 if x, = +1 o
iu
(2) e
0 if x, = -1 o
iu F—
Y, (xou + xiu) = ,‘
+1 if x, = +1 ]
iu .
{
!
Also the elements of a column Y5 (53. + L(ij) are
1 1 xju if Xy = -1 -
fplx, = x . ) =lfox (x =-x )= -
2 ju iju 2 ju " Ou iu 0 if x = 41
iu R
(3) 3
0 if ox, = -1 -
. ) iu :
o Ax, + x ) =lox. (x, +x, )= -
Ju iju ju “0u iu x if x. = 41 q
ju iu -
To see how this may be used to study location and dispersion aliasing consider for
illustration the 23 design. Suppose we wished to compare variance: at the lower and ¥
upper level of factor C = x,. Then the columns Y (53. - X, j) are
3j=0 4 1 5 2 6 3 7
+1 -1 -1 +1 -1 +1 +1 -1
+1 -1 +1 -1 -1 +1 -1 +1
+1 -1 -1 +1 +1 -1 -1 +1
+1 -1 +1 -1 +1 -1 +1 -1
‘/2(51.—54..) 0 0 0 0 0 0 0 0
: J 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 )
g 0 [4] 0 0 0 0 0 N
. . .n q-1 . 1
In general for every i the columns (ggj - 51.3.) will appear in 5 2 pairs -
identical apart from sign. Now suppose data y = (y‘l""'yu""'yn) are available and )
-9
R R L S
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let 3 = x'gj from which the estimated effect of factor j may be obtained by dividing

by an appropriate constant. Then for every i the quantities x'(gj - 51.3) =3 =i

provide an exhaustive set of n/2 1linearly independent contrasts of those n/2 observa-

tions vy, for which x;, = -1. Correspondingly, the columns Ej + 5i-j provide a

similar set of contrasts for the remaining obsgervations for which Xjy = *+1. Denote by

$(i-) and 8(i+) the sums of squares of the y, for which Xjy = -1 and +1

respectively. Then

oot 2 _ 1 o052
s(i-) = — j£0 lox'isg - 5. 01" = 3 ,&o (F—=2)
(4)
nj1 n-1 % :'
stit) =~ 1 [Yay'(x. + 51_.)]2 =1y A *21 3,
3=0 ] 3 =0

For example, returning for illustration to the 8 x 8 array discussed above

“_“ 2 “_‘ 2 “_“ 2 ”_“ 2 ‘_“ 2 “_’ 2 ‘_‘ 2 ‘_‘ 2
e IR e B e e I G I R o IR
~ot 2 22 Sor 2 ~ 2
B G I G I ) I EL A
1 1-0.2 N o a2 am 2
= T UES) « (258 o (BEY) . () (5)

3.2. Elimination of Location Effects

The sums of squares in (4), (5) would be appropriate to compute dispersion effects
only if it could be assumed that all the location effects, including the overall mean,
were known to be zero. If this were not the case then the sums of squares S(i-) and
S{i+) «could be inflated by location effects. To remove such effects we can replace the

yy's in (5) by residuals Yo ~ Yu obtained after eliminating all suspected location

effects, including the mean, by least squares. Since for this mode of estimation the

10~
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vector of residuals is orthogonal to each column vector corresponding to an eliminated
variable, it follows that the identity relation for a sum of squares calculated from such
residuals is still expressed by equation (4) but with all estimated contrasts
corresponding to eliminated variables set equal to zero.

3.3. Expected Values of Sums of Squares of Residuals

Further understanding is gained by considering the expected values of S(i-) and

S(i+) under various circumstances. Suppose a difference in variance might exist
associated with the level of the single column x, and the sums of squares S(i-) and
S(i+) are computed from (4) but with y, replaced by residuals after a number of
location effects have been eliminated. Then, after setting to zero all the elements ;
and i:j in (5) which correspond to eliminated variables, suppose there are £ cases
where bracketed pairs [;, i:j) have been eliminated and m cases where only one element
of a bracketed pair has been eliminated so that there remains % - % - m complete
bracketed pairs.
For a bracketed pair
IERE (3 - 1:91}2] = ? 1 (6)

and for a single element

(2 {1 312] = 1 () + Fun) . (N

It follows that

E(sti-)] = 2 n - 2 - 2 modiin) + F mo?(14) (8)
4 4

E[S(i+)] = (%n - % -%m)oz(iﬂ +%maz(i-) . (9)
If we now define

s2(1-) = S(i-)/(zn - L - 3 m) , (10)
then

2 2, m 2 o2
E{s?(1=)] = 0% (=) + Bz (0® (1) - 0®(i-)) (11

and similarly for s%(i+) with the roles of 02(1-) and 02(1+) reversed.

-11-
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. 3.4. Some Illustrations with the 8 x 8 Array

! The gyeneral situation may be better understood by considering a few special cases

g

:~' again using for illustration the 8 x 8 factorial array. Setting i = 4 = C, suppose we

wish to obtain the dispersion effect 82(4-)/52(4+) which contrasts the variances of the

first four and last four observations.

Elimination of Grand Mean: Elimination of the mean (which would usually be unknown)

results in the removal of O in equations (4). For the 8 x 8 array; n =8, % =0,

m= 1

l-‘

s24) = (L (@2+ (1-52+ 2-62+ G -2} /1/2)

1

[+]

and using (11)

B(s?(4-3] = o?(a-) + =1 [o%(4%) - 0Pa-)]

It will be seen that the slight bias in the variance estimate arises because the isolated

effect 4 is a function of all eight observations. ff

Elimination of the Mean and of Effect 4 : If the location effect associated with -

factor 4 is eliminated as well as the overall mean then a complete pair is removed in “!

(5) and in this example

s%(a-) = 1—; {(1-52+2-62+3-12% /3

E[s%(4-)] = 0%(4-)
No bias now occurs because elimination of 0 and 4 is equivalent to eliminating means
separately from the first four and the last four observations, and 52(4-) becomes a
function of only the first four observations. Similar effects are found with all

bracketed pairs. Thus if we eliminate factor 2 and the interaction 2*4 = 6 the bias

term does not appear because allowance is being made for different effects of factor 2 at

v

Lo
O

the two levels of factor 4.

) 2an
[

T

In the circumstances of effect sparsity here considered, the bias term in (11)

2, . 2
involving 07(i+) - ¢7(i-) would usually be rather small. For example, suppose, with a

e

 Suandid
.
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design having n = 16 runs, that £ = 2 and m f 1, then the bias term will be
{02(1*) - 02(1-)}/22- It seems reasonable to conclude that for purposes of model
identification the elimination of location effects by simply taking residuals 1s unlikely
to mislead.
However, if desired, appropriate linear combinations of equations (8) and (9) will

yield unbiased estimates éz(i-) and §2(1+) as follows:

82i-) = ¥ (1) + = (82 (10) - 8P

82(14) = 82(14) + (s2(i+) - 8%(1-))

—_—r
2n=-42-4m

3.5. Dispersion Interactions

Since more than one dispersion effect might be present we need to consider the

possibility of interaction. If the effect of changing from the minus level to the plus

level of a factor i 1is to multiply the variance by ¢i irrespective of whether the plus ‘;}
or minus level of factor Jj is employed we shall say that there is no dispersion j}}
interaction between i and j. 1In such a case the variances for the various factor ;;
combinations are as follows -

+ | -, 54) = ¢j02 0% (14,9+) = °i°j°2
3
- | ®(i-,5-) = 62 o?(1+,5-) = ¢iaz
- i +

Equivalently for the logged variances the dispersion effects wili be additive and in this
metric dispersion interactions of all orders may be defined in the usual way. It shall be

noted that when there is no dispersion interaction the ratio of the average variance at

the plus and minus levels for factor i is

-13-
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o and similarly for factor j and ¢j. Thus even when there is more than one dispersion

e
E-’ effect the simple analysis described above could still be of value as a preliminary analyti-
}_t cal device for indicating which factors needed further study. In particular if two factors
b
ro.
V.
.
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i and j appeared to exhibit dispersion effects, then further analysis would be
appropriate to consider the general evidence for activity of these effects taking account
also of possible interaction. This could be done by considering general differences among
the sums of squares associated with the four cells S(i-,j-), S{(i-,j+), S(i+,3-), S(i+,j+)
of the two-way table for the two factors. As before these sums of squares would be
calculated from residuals after eliminating location effects. The consequences of doing
this is explored in the Appendix which gives a matrix generalization of earlier results.

A convenient function for comparing a set of variances sf,---,si having VyreeesVy

degrees of freedom respectively is Bartlett's criterion,

-1 k 2 k 2 k
M=Nin(N ) vtst) - ) thn s where N = ) v, -

t=1 t=1 t=1
When, as would frequently be the case, the screening design is of only moderate size one
could not expect to study simultaneously a large number of factors in this way. For
example, for n = 16, the individual cells from which S§(i-,j-) S(i-,j+), etc. would be
calculated will each contain only four observations. However when, in circumstances of
effect sparsity, only a very few such effects are likely to be of appreciable magnitude,
the above analysis could be of value.

We again illustrate with the welding data. Figure 3(a) shows the 35 distinct values
of M computed for the data. There are (;5) = 105 ways of choosing two columns from
the 15 columns of the design but these are aliased in sets of three (any column is the
product of two other columns). Thus the largest value is associated with columns 15 = C,
2 =H, and 13 = J. This effect could equally well be attributed to factors C and H
with interaction -CH = J or to C and J with interaction ~CJ = H or to H and J
with interaction -HJ = C. It is noteworthy however that the seven largest values of M
which stand out from the rest all jinclude factor C in their triplets. Also if the

dispersion effect of C is eliminated by rescaling the residuals the plot (Fig. 3(b)) no

longer shows outstanding points.
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Figure 3. Values of M for distinct column triplets (a) before

(b) after elimination of the possible dispersion effect
due to factor C, As a rough guide the nomal theory
5% and 1% significance levels of M are shown although
as before they are not formally justifiable.
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4. MAXIMUM LIKELIHOOD ESTIMATES OF LOCATION AND DISPERSION EFFECTS

Once a model has been identified a more precise fitting is possible using maximum
likelihood. Hartley and Jayatillake (1973) have shown that the following method will give
convergence to a stationary point of the likelihood. Conditional on the dispersion
effects, location effects may be obtained by weighted least squares; the dispersion
effects may now be recomputed from the residuals and the iteration continued until
covergence is achieved. It is often convenient to assume initially that there are no
dispersion effects.

For illustration the following table shows maximum likelihood estimates for the
welding data assuming location effects for B and C and a dispersion effect for C.

The earlier approximate estimates are indicated for comparison.

o (¢

" B ¢ o2 o %cor o ek

Maximum likelihood estimates 42,96 2.04 3.10 -469 021 22.3
Earlier approximate estimates 43.00 2.15 3.10 .564 .031 18.2

Table 2. Estimates of location and dispersion affects: welding data.

Appendix

The results of section 3 can be generalized to two variables using matrix algebra.
Again, X is a matrix of 11's with orthogonal columns BorevoeBpqr X is the vector
of observations, and 5 = E;X' Define 1I(*) to be a n x n diagonal matrix with 1's in
those rows for which the condition * ig true, 0's elsewhere. Then, for example,
I(i~) 1is diagonal with 1's in rows where %= -1; I(i-,3-) 1is diagonal with 1's in rows

where LT T -1; I is the identity matrix.

The following four identities,

stit) = (z(it)y) ' (Ltit)y)

S|

£=

xXx'




g% = (5 - 200-))x
I = I(i=) + I(i+)
imply, after some algebra, the previously shown identity,

1 A

n=- -~
2 S o2
s(i-) = o L3 - a7 .

3=0

Extending to two variables, the additional identity

s(it, 1) = (1(it,31)y) ' (1(it,3)y)

implies
1 n=-1 . - ~ - 2
S(i=,3=) = =—— )} (k = i¢k = jek + i*3jek)
16n
k=0
1 n=1 . - - - 2
S(i=,34) = 5= L (k= ik + jek ~ irjek)
6n
k=0
1 n=1 . S ~ - 2
S(i%,3=) = o= L (k+ ivk ~ ok ~ i+j*k)
6n
k=0
n=1 . - - -
t % , ~ .2
S(i+,3+) === ) (k + iek + jok + iej°K)° .
16n k=0

Now to compute expectations of these quantities, suppose that 2Z is the n x p
matrix of columns of X which correspond to location effects included in the model, i.e.,

eliminated to obtain residuals. Then, assuming E(y] = 2T, and using the identity
Ely'Ay] = trace (gE[xx'J)
for A symmetric,

Els(i-,3-)] = 22 2Po?(i-,5-) + ) erace [g2'I04-,3-)22' 1041, 38) o (1, 38)
n

where summation is over the four possible combinations of it,jt. To compute the trace in

the above expression, we divide the columns of 2 into four gqroups:
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STt
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1%t

Group 4: Those columns 2y such that By o2y 5j.gk and zi.ﬁj.ék are also in 2.

X

Group 3: Those columns 2y such that exactly two of %% 5j.zk’ ~1053-5k

are also in g.

Group 2: Those columns z, such that only one of x ez

X.*2
i ~q A

5 XX,

k'’ k' ~i ].Ek
is also in g .

Group 1: Those columns not in previous three groups.

Let m, = number of columns in group k; note that m, is a multiple of k. Further

subdivide group 2 into three subsets

Group 2.1: those pairs 59' Ey with Eg " %%

Group 2.2: those pairs with Bg = X%

N
]
2
*

Group 2.12: those pairs

IN

zk with zg = bi.Bj'zk'

Let m, , be the number of columns in group 2.k; my = my 4 + my 5 + My 4o

Then after some algebra,

4n - 7p + 3m, + 2m, +
E{s(i-,3-)] = 02(1-,;'-)[ 3 llL"J

2
pomg-3myom 2"'2.1J

+ o2 (1-,50)(

2
p-m == m. - m_ + 2m
2 2 2.2
+ 0 (i+,3-)] a3 3 ]

2
Mg T3y oMyt 2lrl2.12]

+ 02(i+,j+)[

Note that S(i-,j=-) will be unbiased (up to a scale factor) if all columns of 2 are in
group 4 (p = my, my = my = my = 0) i.e. for each variable Xy eliminated, variables

X, X. ., X, . are also eliminated. Similar expressions for expectations of
~iek, ~j*k’ ~i*j*k

S(i=,j+), S(i+,j=-) and S(i+,j+) can be worked out quite easily from the above formula

=18~

. | RO

L R

| SRR




(ialae Jad Senin inge Sk ding S Ane don Sk g —

i vl SRS vl g apd et il ar il rons o) & in-as o us e L o e e o g o

by switching signs on it,jt. In particular, the expression for E(S(i-}] derived in

section 3.3 follows immediately with

1

o®(i-) = 2 (a%(1-,37) + o?(i=,50))

02(1¢) = (02(1+,j—) + 02(1*,j+)) .

[N

Thus the calculation of estimated dispersion effects defined as the change in the average

variance is not affected by the existence of more than one real dispersion effect.

Acknowledgement

Spongored by the United States Army under Contract No. DAAG29-80-C~0041 and aided

by access to the Statistics Department Research Computer at the University of Wisconsin-

Madison.

=-19-




T I R TR T TP T RN TR T TL VL RURR R RwL T TR DRLDW WL TR TR =

T ey

Al

REFERENCES
Box, G.E.P. and Hunter, J.S. (1961). The 2k-p Fractional Factorial Designs.

Technometrics 3, 311-351, 449-458.

g a4

Box, G.E.P., Hunter, W.G. and Hunter, J.S. (1978). Statistics for Experimenters. i
New York: Wiley.

Box, G.E.F. and Jenkins, G. (1976). Time Serie. Analysis: Forecasting and Control.
Holden~-Day, San Francisco.

Daniel, C. (1959). Use of Half-Normal Plots in Interpreting Factorial Two-Level
Experiments. Technometrics, 1, 4,149.

Daniel, C. (1976). Applications of Statistics to Industrial Experimentation.
New York: Wiley.

Davies, O.L. ed. (1954). The Design and Analysis of Industrial Experiments. Oliver and
Boyd, London.

Finney, D.J. (1945). The Fractional Replication of Factorial Arrangements. Annals of

Eugenics 12, 4, 291-30t.

Fisher, R.A. (1966). The Design of Experiments, 8th edition. Hafner, New York.

Hartley, H.O. and Jayatillake, K.S.E. (1973). Estimation for Linear Models With Unequal
Variances. J. Amer. Statist. Assoc. 68, 189-192.

Plackett, R.L. and Burman, J.P. (1946). Design of Optimal Multifactorial Experiments.
Biometrika 23, 305-32S5.

Rao, C.R. (1947). Factorial Experiments Derivable from Combinatorial Arrangements of
Arrays. J. Roy. Statist. Soc., B9, 128-140.

Taguchi, G. and Wu, Y. (1980). Introduction to Off-Line Quality Control. Central Japan

Quality Control Association, Nagoya, Japan.

GELB/RDM/ jp

-20-

‘
L

:

,.
e
ol 2T

|

Salia

04

E




C S AP av et dugn gare st bt lint At St I AC A At I S A et et DSt - A et S A s GV sonk St SIYA Dl v SN SRS SNSRIt O T o

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE pEpREAD NSTRUCTIONS
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

#2796 e
o S /e
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Summary Report - no specific

reporting period
8. PERFORMING ORG. REPORT NUMBER

STUDIES IN QUALITY IMPROVEMENT I:
DISPERSION EFFECTS FROM FRACTIONAL DESIGNS

7. AUTHORC(e) 8. CONTRACT OR GRANT NUMBER(s)
George E.P. Box and R. Daniel Meyer DAAG29-80-C-0041
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::2(A;R°Al'4 ERLKE)JS:QTT,NPU!LOBJEERCS‘I’. TASK
Mathematics Research Center, University of °
61 lnut St t Wis { Work Unit Number 4 -
0 Walnu ree consin Statistics and Probability
Madison, Wisconsin 53706
11. CONTROLLHIG OFFICE NAME AND ADDRESS 12. REPORT DATE
U. S. Army Research Office February 1985
P.O. Box 12211 3. NUMBER OF PAGES
Research Triangle Park, North Carolina 27709 20
14. MONITORING AGENCY NAME & ADDEESS{M different from Controlling Office) 15. SECURITY CL ASS. (of th!/s report) j
UNCLASSIFIED -
18a. DECL ASSIFICATION/ DOWNGRADING B
SCHEDULE e
16. OISTRIBUTION STATEMENT (of this Report) . ]
Approved for public release; distribution unlimited. )
—

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, it different trom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

Fractional factorials, industrial experimentation, location effocts,
dispersion effects, model identification

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

Fractional factorial designs have been used successfully in industry
and elsewhere to detect and estimate sparse factor effects. The effects
usually envisioned measure changes in location associated with the experi-
mental factors. 1In this paper we consider the possibility of detecting and
estimating sparse dispersion effects measuring changes in variance associated
with the factors.

DD , %", 1473  eoimion oF 1 nov 65 1s oBsOLETE T

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) -




